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Abstract. σR, σ−n and σ−2n have been calculated via the BUU model with soft EOS and 0.8 times of
σCug. The density distribution without any adjustable parameters which comes from the RMF model
has been introduced into the BUU calculation to replace the normally used one-parameter square-type
distribution. The calculated results can reproduce the experimental data well for both halo- and stable-
nuclei–induced reactions. Here σ−n or σ−2n is calculated as the difference between σR of halo nucleus and
core nucleus, by assuming σcorr � 0. It indicates that this assumption works very well at high energy in the
BUU calculation. More experimental measurements are necessary to test the validity of this assumption
at intermediate energy.

PACS. 24.10.-i Nuclear reaction models and methods – 25.60.Dz Interaction and reaction cross-sections
– 25.60.Gc Breakup and momentum distributions – 27.20.+n 6 ≤ A ≤ 19

With the development of radioactive ion beams, the
properties of nuclei far from the β-stability has been stud-
ied intensively. An abnormal enhancement of the inter-
action cross-section σI was observed for 11Li [1]. It indi-
cates that the two loosely bound neutrons are expected
to have a very extended density distribution surround-
ing the 9Li core, forming the neutron-halo structure. The
halo structure of 11Li seems to be consistent with all the
experimental results including the enhancement of σI [1],
the enhancement of the two-neutron removal cross-section
σ−2n [2] and the narrow peak in the momentum distribu-
tion of the fragmentation 9Li [3]. Further experimental
and theoretical investigations also suggest the existence
of neutron or proton haloes in other nuclei [4–20].

It is of particular importance to develop a theoretical
method to study the mechanism of exotic-nuclei–induced
reactions. A useful tool to study σR is the microscopic
Glauber multiple-scattering theory [21]. One of the
simplest approximation of the Glauber model is the
optical-limit approximation. It has been widely used for
deducing the nuclear-matter radii from σI and σR. How-
ever, it has been pointed out that it may not be a good
approximation if one applies the optical-limit Glauber
model to study halo nuclei at intermediate energy [22,23].
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Thus, the few-body limit approximation was introduced
into the Glauber model, where a halo nucleus is decom-
posed into core part and halo part. It found that the
few-body limit Glauber model gives a smaller cross-section
than that obtained from the optical-limit Glauber model
if one uses the same wave function. In the framework of
the few-body limit Glauber model, a theory is presented
to calculate the nuclear parts of various fragmentation
cross-sections, such as σR, σI, σ−n and σ−2n [23,24].

On the other hand, the Boltzmann-Uehling-Uhlenbeck
(BUU) equation [25,26] has been introduced into the cal-
culation of σR [27]. This model incorporates the Fermi
motion, mean field, individual nucleon-nucleon (N -N) in-
teractions and the Pauli-blocking effect simultaneously.
It can be used to extract the Equation-Of-State (EOS)
and the in-medium N -N cross-section σin-medium

NN via fit-
ting the experimental collective flow and balance energy
etc. [28–32]. Within the framework of the BUU model,
the average N -N collision number N(b) can be obtained
as a function of the impact parameter (b) by assuming
a reasonable parameterization of σNN . According to the
Poisson statistics, the nucleon fraction Tn(b) that has ex-
perienced n times two-body collisions during the course
of nucleus-nucleus reaction can be obtained. The sum of
Tn(b) over n (n ≥ 1) represents the total probability of
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N -N collisions and is related closely to the absorption
probability of the nuclear reaction. Therefore, the total
reaction cross-section σR can be obtained by

σR = 2π

∫ ∞∑
n=1

Tn(b)bdb = 2π

∫ [
1 − e−N(b)

]
bdb . (1)

For simplicity, a square-type density distribution is used
to replace the surface-diffused distributions. The width
of the square-type density distribution as the unique pa-
rameter was obtained by fitting the σR’s at relativistic
energies. Then the BUU calculations can reproduce the
experimental data quite well in a wide energy range. Since
the medium effect is different at various incident energies
and the real density distribution is more complex than
the square-type one, the above assumptions are too sim-
ple. It is also interesting to see whether the BUU model
can be used to calculate other fragment cross-section, such
as σ−n and σ−2n. In this letter, we apply the BUU model
to investigate σR, σ−n and σ−2n simultaneously, by using
the density distributions which are calculated from the
nonlinear relativistic mean-field model (RMF) [33].

Let us consider the reaction of 11Li with a target nu-
cleus T, as a typical example. The reaction can be sum-
marized in the frame as [23,24]

11Li{|Ψ0〉} + T{| − K, Θ0〉} →
11Li{|q, Ψα〉} + T{| − K − q, Θβ〉} , (2)

where the initial 11Li with the intrinsic wave function Ψ0 is
at rest in the projectile rest frame; Θ0 is the intrinsic wave
function of the target nucleus and −�K is the relative
momentum. At the final stage of the reaction, 11Li goes to
the state Ψα specified by α with momentum transfer −�q.
The target nucleus receives a momentum transfer −�q and
goes to the state β. It is defined that α = 0 and β = 0
stand for the respective ground states. σR is obtained by
summing the cross-section of the reaction over all possible
final states (αβ), except for αβ = 00. σI is obtained by
summing all possible states except for α = 0. More details
can be found in refs. [23,24]

By assuming the core-plus-halo neutrons structure of
11Li, a basic relation is established between σI or σR and
σ−2n [23]; we have

σ−2n(11Li + T) = σI(11Li + T) − σI(9Li + T)
= σR(11Li + T) − σR(9Li + T)

+σcorr(11Li → 9Li) (3)

with the correction term

σcorr(11Li → 9Li) = σdiff(9Li + T) − σdiff(11Li + T)
= (σR(9Li + T) − σI(9Li + T))

−(σR(11Li + T) − σI(11Li + T)) . (4)

Ogawa et al. [23] estimated the difference between σR and
σI (σdiff) and found that it is less than a few percent at
high energy. It strongly suggests that the contribution of
σcorr(11Li → 9Li) to σ−2n(11Li + T) is very small. Then it
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Fig. 1. The variation of σR with incidence energy for
12C + 12C and 11Li+ 12C reaction systems, respectively. Open
circles represent the experimental data taken from literatures,
while the solid curves represent our BUU calculation.

will be a good approximation to assume that σcorr is zero
at high energy. However, σdiff is expected to be larger
at an energy lower than 100 MeV/u. The contribution of
σcorr(11Li → 9Li) to σ−2n(11Li + T) should be considered
carefully in the intermediate-energy range. In this calcu-
lation, σ−2n is approximate as the difference between the
σR’s of 11Li and 9Li as given by

σ−2n(11Li + T) � σR(11Li + T) − σR(9Li + T) . (5)

Here soft EOS and 0.8 times of Cugnon parameteriza-
tion of the nucleon-nucleon cross-section (σCug) [27] are
used in the BUU framework. The density distribution,
which is the most important input of the BUU model,
is calculated by a nonlinear relativistic mean-field model
(RMF) [34–38] with the NLZ force parameter [38]. More
detailed studies indicate that RMF calculations with other
sets of force parameters [33,39,40] will give similar density
distributions. It is also noticed that there is no adjustable
parameter in the present BUU calculation.

As shown in fig. 1, the open circles are the experimen-
tal σR of 12C + 12C and 11Li + 12C reaction systems, re-
spectively. The solid lines indicate the present BUU calcu-
lation by using the RMF-calculated density distribution.
The dashed and dotted lines indicate the BUU calculation
by using square-type and HO-type density distributions,
respectively, where the width of each density distribution
as the unique parameter is obtained by fitting σR at rela-
tivistic energy. The density distributions of 11Li and 12C
which are given by the RMF theory with the NLZ inter-
action are plotted in fig. 2. The solid, dashed and dot-
ted curves are the density distribution of matter, proton
and neutron, respectively. It seems that the RMF theory
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Fig. 2. Density distributions of matter, neutron and proton of
11Li and 12C in the RMF theory with the NLZ interaction. The
solid, dashed and dotted curves are the density distributions
of matter, proton and neutron, respectively.
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Fig. 3. Energy dependence of σ−2n of 11Li + 12C. The open
circles are experimental data. The solid curve is the present
BUU calculation. The dotted curve is the Glauber-calculated
result of ref. [41].

can describe the long tail of the neutron density distri-
bution of 11Li [33,39]. It can be seen from fig. 1 that the
present BUU calculations reproduce the experimental σR

very well, by introducing the more natural density distri-
bution without any adjustable parameters to replace the
normally used square-type or HO-type distributions with
one adjustable width parameter.

σ−2n(11Li + 12C) is calculated by using eq. (5) in the
framework of the BUU model, where σcorr is assumed to
be zero. It should be noted that the calculated values only
correspond to the nuclear part of the measured σ−2n val-
ues. Figure 3 shows the energy dependence of σ−2n of
the 11Li + 12C reaction system. The experimental data
are indicated by open circles [2,23]. The solid curve is the
present calculation. The dashed curve is the calculated re-
sult which is taken from ref. [41]. It can be seen that the
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Fig. 4. (a) The variation of σ−2n of 11Li at 800 MeV/u with
A1/3. (b) The variation of σR of 11Li at 800 MeV/u with A1/3.
All solid symbols are experimental data. The solid curves are
the present BUU calculation. The dotted curve is the calcu-
lated result of ref. [24].
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Fig. 5. Mass number dependence of σ−n induced by B iso-
topes. The solid circles indicate the experimental data. The
solid curve connecting open triangles indicates the present
BUU calculation.

BUU-calculated σ−2n decreases gently with increasing en-
ergy both in the low- and high-energy range. It suggests
that the assumption (σcorr � 0) works well at high energy.
At intermediate energy, the calculated σ−2n of ref. [41] in-
creases fast with the decrease of energy, while the BUU
calculation gives a slight increasing trend. However, the
experimental data of σ−2n in this energy range is rather
rare. More experimental measurements are necessary to
estimate the roles of different mechanisms simultaneously
and test the validity of the assumption (σcorr � 0) at in-
termediate energy.

The variations of σ−2n and σR of 11Li at 800 MeV/u
with various targets are plotted as a function of A1/3, as
shown in fig. 4(a) and (b), respectively. All solid symbols
indicate the experimental data. The solid curves are the
present results. The dotted curve is the calculated result



266 The European Physical Journal A

Table 1. Coulomb dissociation cross-section of 11Li + 64Cu
and 11Li + 208Pb at 800 MeV/u.

Reaction system 11Li + Cu 11Li + Pb

[41] (mb) 81 765

[44] (mb) – 971

[45] (mb) – 960

[43] (mb) 89 ± 3 635 ± 25

This work (mb) 76 ± 40 457 ± 100

of the Glauber model [24]. The present calculation gives
the similar trend of σ−2n as the result of the Glauber
model [24]. The nice agreement between theory and ex-
periment is obtained for light reaction system. It also con-
firms that the assumption (σcorr � 0) works at high en-
ergy. It is noticed that the present BUU calculation only
includes the nuclear-part contribution, whereas the experi-
mental values include both the nuclear and Coulomb parts
contributions. For the 11Li + 208Pb reaction system, the
BUU-calculated nuclear part of σ−2n is 853 mb, which
is close to the value calculated in the diffractive eikonal
model [42]. The Coulomb dissociation cross-section can be
deduced as the difference of experimental σ−2n and the
BUU-calculated nuclear part of σ−2n. It is found that the
deduced Coulomb contribution of σ−2n can be neglected
for a light target. It is inferred from the recent study [23]
that the nuclear-Coulomb interference would become more
important at b � 9 ∼ 20 fm. Thus, for the 11Li + 208Pb
reaction system, the Coulomb effect on σ−2n plays a more
important role than for other light reaction systems. As
shown in table 1, the deduced Coulomb dissociation cross-
section of 11Li + 64Cu is 76 ± 40 mb in the BUU calcu-
lation, which is equal to other calculations [41,43]. For
11Li + 208Pb, the present result is smaller than other esti-
mations [41,44,45,43]. More studies about both Coulomb
and nuclear contributions will be necessary in the future.

One-neutron removal cross-sections σ−n of B iso-
topes [46] at 43–76 MeV/u are further studied by the
above BUU model, as plotted in fig. 5. Here the RMF-
calculated density distributions of B isotopes are used. It
can be seen that the BUU calculation can reproduce the
isospin dependence of experimental data. The σ−n of 14B
is larger than its neighbors, which may be attributed to
the weak binding of the last neutron (Sn = 0.97 MeV)
and the extended valence density distribution of 14B. To-
gether with the enhancement of the σR measurement for
14B [7,8] and the ground-state structure [47,48], it sup-
ports strongly the conclusion that there exists a one-
neutron halo structure in 14B. It suggests that the BUU
calculation can be used to study the isospin dependence of
σR, σ−n or σ−2n simultaneously and give a useful criterion
of the halo structure.

In conclusion, σR, σ−n and σ−2n have been calculated
via the BUU model by using soft EOS and 0.8 times of
σCug. The density distributions which come from the RMF
model with the NLZ interaction have been introduced into
the BUU model to replace the normally used square-type

or HO-type density distributions. Then the BUU calcu-
lations with no adjustable parameter can reproduce well
the experimental σR, σ−n and σ−2n for various reaction
systems. Here σ−n and σ−2n have been calculated as the
difference between σR of the halo nucleus and core nucleus,
by assuming σcorr � 0. It indicates that this assumption
works well at high energy, which was also mentioned by
refs. [23,49]. At intermediate energy, it seems that this
assumption still works and more experimental data is
necessary to obtain a possible conclusion. It suggests that
the BUU model can also be used to study the momentum
distribution of fragmentation, by combining with the
judgement of fragments. Thus, it is interesting to use the
BUU model to test the validity and consistency of the en-
hancement of σR, the enhancement of σ−n and the narrow
momentum distribution of fragmentation as criterions of
the halo structure simultaneously. This work is in process.
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